2025年最佳英雄联盟投注网站LoL投注网站2030年前实现碳达峰、2060年前实现碳中和,是中国为应对全球气候变化而作出的庄严承诺,也是2035远景目标纲要和“十四五时期经济社会发展的主要目标之一。我国碳排放主要来源于电力、建筑、工业生产等领域,其中电力占比大,约2/5左右,其次是建筑领域,占比超1/5。建筑领域大的碳排放源是建筑用电和用热产生的间接碳排放,约占我国碳排放总量的17%。因此,探索和研究建筑领域的降碳理念及实施路径,是非常重要的。
未来的供配电系统中,储能是智能电网、可再生能源高占比能源系统、“互联网+智慧能源的重要组成部分和关键支撑技术。储能技术主要有物理储能(包括抽水蓄能、压缩空气蓄能和飞轮储能等)和电化学储能(主要包括锂电池储能、铅蓄电池储能和液流电池储能)。物理储能建设需要一定的自然条件,受地理条件制约,建设周期较长。目前,大规模储能技术中只有抽水蓄能技术相对成熟,用于电网侧。电化学储能技术相对成熟,应用空间广泛,未来有可能成为具发展前景的储能技术路线。其中电池储能技术具有响应速度快、效率高及对安装维护要求低等优点。从技术特点考虑,锂电池具有存储密度高、循环特性好、响应速度快等优点,是电化学储能中的绝对主力和发展方向,适合于用户侧储能。
b.政策问题。相关政策对鼓励发展用户侧储能提供了有利条件,如发展改革委、能源局印发的发改能源〔2022〕209号《“十四五新型储能发展实施方案》指出,要“聚焦新型储能在电源侧、电网侧、用户侧各类应用场景;实现用户侧新型储能灵活多样发展;在发改能源规〔2021〕1051号《加快推动新型储能发展的指导意见》指出,要“积极支持用户侧储能多元化发展。然而,当前用户侧储能的成本还比较高,激励用户侧储能发展政策性支持和补贴力度还不够。世界范围内,发展清洁能源的在经过了装机容量爆炸式增长后,均制定了一系列激励储能发展的政策。如美国的自发电激励计划(自2011年9月起,以2美元/W对独立的储能系统进行补贴)、德国的小型户用光伏储能投资补贴计划(自2013年政策发布起,为功率30kW以下、与户用光伏配套的储能系统提供30%的安装补贴)等。
d.安全问题。电化学储能系统存在火灾、爆炸、化学风险、电气风险等安全隐患,安全性问题是制约其发展的一个重要因素,尤其是应用在建筑室内场所。现阶段针对储能系统已有部分消防措施,且业内专家认为锂电池的安全性在技术上是可以解决的,技术发展的空间仍存在。目前规模较大的用户侧储能以采用集装箱式锂电池储能装置设置于建筑室外场地的做法为主,鲜有设置在建筑内部的场景。据了解,上海招商银行大厦于大楼地下一层库房设置了1MW/2.56MWh磷酸铁锂电池储能系统,该项目是上海市商业化应用楼宇用户侧储能项目;北京朝阳区姚家园华润商业项目于大楼地下一层库房设置了500kW/2000kWh磷酸铁锂电池储能系统,储能电池仓靠外墙和汽车坡道侧放置。
上述几个方面中,建筑储能的安全性是尤为需要关注的,它也是制约用户侧储能在民用建筑中推广应用的主要因素之一,尤其是在建筑物内部的应用。从锂电池大规模产业化伊始,安全性便成了与之相伴的焦点话题。由于锂电池的电极材料以及电解质均较为易燃,当内部反应积聚的热量不能及时散失时,热失控现象的出现便容易引发电池安全事故。北京丰台区“4·16较大火灾事故直接原因就是电池间内的磷酸铁锂电池发生内短路故障引发电池热失控起火。近些年韩国发生的30多起电池储能电站着火事件,也给我国储能行业安全发展敲响了警钟。虽然我国储能装机容量在近些年得到了大幅增长,但目前仍缺乏相关的安全标准文件,因此,亟待相关规划、设计、施工、检测、产品、运维等标准尽快出台。
纵观世界范围内储能相关安全标准,由美国消防协会制定的NFPA855-2023《StandardfortheInstallationofStationaryEnergyStorageSystems》相对系统和全面,该标准早发布于2019年秋季,据称是全面的储能系统安装防火标准。该标准明确了基于储能系统所使用的储能技术,储能系统安装、尺寸、隔离及灭火和控制系统的要求。对不同类型储能的大储能容量值也有明确要求(锂电池大安装容量不得超过600kWh,如表1所示)。同时该标准还规定:储能系统每组储能容量大为50kWh,每组之间间距以及与墙的距离均不得小于0.9m;包含储能系统的房间应具有至少2h耐火等级的防火屏障并与建筑物的其他区域分隔开等措施。另外,还重点对储能系统的排气通风、火灾探测、火灾控制、爆炸控制以及喷淋系统、扑救措施等作了细致规定。国内已经发布的储能安全标准还较少,该标准也许可提供一些参考借鉴。
关于检测标准,UL9540《能量储存系统和组件的安全标准》和UL9540A《电池储能系统热失控扩散评估测试方法》是两个**行业影响力的电池能量储存系统安全性标准。UL9540是全球储能系统和设备安全标准,也是当下储能系统的高安全标准。测试类目繁多,条件苛刻,被北美多个授权为级安全标准。适用于包括电化学、机械和热能的各种类型能量储存系统,评估集成到储能系统中不同组件的兼容性和安全性,不针对构成储能系统的单个部件/组件。UL9540A是储能电池具*的热失控防护测试之一,侧重于系统组件的安全性能评估和应对故障情况的要求,其测试报告主要从电芯(电芯是否热失控)、模块(热失控在模块内部扩散的倾向,并可能蔓延到其他相邻机柜的情况)、机柜(热失控是否在整个机柜内蔓延)、安装(消防系统的有效性)4个层级测试对储能系统热失控蔓延的情况进行评估。
目前,已有一些建筑中开展了“光储直柔系统的应用探索,如金砖新开发银行总部(系统配置容量为86kW的光伏发电,126kWh的铅酸电池储能系统,应用直流配电系统供重要楼层照明)、深圳建科院未来大厦(系统配置容量为150kW的光伏发电,300kWh电池储能系统,应用直流配电系统,直流负载容量达到388kW)、清华大学建筑节能楼(系统配置容量为20kW的光伏发电,3组6.6kWh的钛酸锂电池储能,应用直流配电系统)等。然而,目前的这些应用案例中,储能规模还较小,应用场景相对单一,未来对于如何在大体量、多场景建筑中构建合理的光储直柔系统还需进一步探索和研究。
随着对储能的政策支持,以及制约其大规模应用的储能安全性、经济性等问题得到逐步解决后,应用用户侧储能可以在建筑内打造更多应用场景,如作为建筑自备电源。当前,建筑中常见的自备电源有:独立于正常电源的发电机组、蓄电池组(EPS、UPS)、干电池等,具体根据用电负荷的容量、允许中断供电的时间以及要求的电源为交流或直流等条件来确定。在储能技术发展的今天,构建建筑自备电源就有了多种选择,可以是传统的柴油发电机,也可以是“柴油发电机+储能多能混合的模式,还可以是纯储能的模式,具体结合工程实际情况进行经济性、合理性分析而定。
实际上,这种方式已经被广泛应用于一些地区的离网和独立微网系统(指与大电网隔离、独立运行的小型电力系统)中,如供电条件较差的偏远地区或者海岛等。系统充分利用可再生能源发电,如风力发电、光伏发电等。为了有效提高独立微网系统的供电可靠性,需要在系统中配置柴油发电机,可再生能源不能提供足够的电能以及储能容量过低无法满足负荷的情况下,启动柴油发电机为系统提供额外的电能支持。当然,当储能系统容量在正常运行范围内时,也可以与风力发电、光伏发电一起为负荷供电。当柴油发电机开启时,可以选择将储能系统退出运行,也可以尽量将柴油发电机运行在额定功率下,多余功率给电池充电。为了实现一定的经济效益,独立微网系统中的柴油发电机可采用多台相对小容量的机组,根据负荷实际需求,协调控制开启一台或者多台柴油发电机组,使单台柴油发电机处在佳经济运行状态。
Acrel-2000MG微电网能量管理系统,是我司根据新型电力系统下微电网监控系统与微电网能量管理系统的要求,总结国内外的研究和生产的经验,专门研制出的企业微电网能量管理系统。本系统满足光伏系统、风力发电、储能系统以及充电桩的接入,全天候进行数据采集分析,直接监视光伏、风能、储能系统、充电桩运行状态及健康状况,是一个集监控系统、能量管理为一体的管理系统。该系统在安全稳定的基础上以经济优化运行为目标,促进可再生能源应用,提高电网运行稳定性、补偿负荷波动;有效实现用户侧的需求管理、消除昼夜峰谷差、平滑负荷,提高电力设备运行效率、降低供电成本。为企业微电网能量管理提供安全、可靠、经济运行提供了全新的解决方案。
本文主要探讨的是用户侧电化学储能,而实际上储能的概念更加宽泛,它是储电、储热、储气等的综合,不局限于化学电池储能等方式。建筑内可利用的各类具有储能/蓄能能力的设备设施都可以作为储能资源,如水蓄冷、冰蓄冷等,均是常见的可实现电力移峰填谷的技术手段。在此基础上,还可通过能源基础设施耦合建设,如水蓄冷系统利用建筑消防水池蓄冷,既节省土建费用,提升空间集约利用水平,也可节省消防水池维护和消防水质保持费用,进一步降低成本。